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ABSTRACT
We study a distributed randomized information propaga-
tion mechanism in networks we call the coalescing-branching
random walk (cobra walk, for short). A cobra walk is a
generalization of the well-studied “standard” random walk,
and is useful in modeling and understanding the Susceptible-
Infected-Susceptible (SIS)-type of epidemic processes in net-
works. It can also be helpful in performing light-weight in-
formation dissemination in resource-constrained networks.
A cobra walk is parameterized by a branching factor k. The
process starts from an arbitrary node, which is labeled ac-
tive for step 1. (For instance, this could be a node that has
a piece of data, rumor, or a virus.) In each step of a cobra
walk, each active node chooses k random neighbors to be-
come active for the next step (“branching”). A node is active
for step t + 1 only if it is chosen by an active node in step
t (“coalescing”). This results in a stochastic process in the
underlying network with properties that are quite different
from both the standard random walk (which is equivalent
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to the cobra walk with branching factor 1) as well as other
gossip-based rumor spreading mechanisms.

We focus on the cover time of the cobra walk, which is
the number of steps for the walk to reach all the nodes, and
derive almost-tight bounds for various graph classes. Our
main technical result is an O(log2 n) high probability bound
for the cover time of cobra walks on expanders, if either the
expansion factor or the branching factor is sufficiently large;
we also obtain an O(log n) high probability bound for the
partial cover time, which is the number of steps needed for
the walk to reach at least a constant fraction of the nodes.
We show that the cobra walk takes O(n log n) steps on any

n-node tree for k ≥ 2, and Õ(n1/d) steps on a d-dimensional
grid for k ≥ 2, with high probability.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Stochastic processes;
Probabilistic Algorithms; G.2.2 [Discrete Mathematics:
Graph Theory]: Graph algorithms

General Terms
Algorithms, Theory

Keywords
Random Walks, Networks, Information Spreading, Cover
Time, Epidemic Processes

1. INTRODUCTION
We study a distributed propagation mechanism in net-

works, called the coalescing-branching random walk (cobra
walk, for short). A cobra walk is a variant of the standard
random walk, and is parameterized by a branching factor,
k. The process starts from an arbitrary node, which is ini-
tially labeled active. For instance, this could be a node that
has a piece of data, rumor, or a virus. In a cobra walk,
for each discrete time step, each active node chooses k ran-
dom neighbors (sampled independently with replacement)
to become active for the next step; this is the “branching”
property, in which each node spawns multiple independent
random walks. A node is active for step t if and only if it is
chosen by an active node in step t−1; this is the“coalescing”
property, i.e., if multiple walks meet at a node, they coalesce
into one walk.
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A cobra walk generalizes the standard random walk [35,
39], which is equivalent to a cobra walk with k = 1. Ran-
dom walks on graphs have a wide variety of applications,
including being fundamental primitives in distributed net-
work algorithms for load balancing, routing, information
propagation, gossip, and search [16, 17, 8, 44]. Being lo-
cal and requiring little state information, random walks and
their variants are especially well-suited for self-organizing
dynamic networks such as Internet overlay, ad hoc wireless,
and sensor networks [44]. As a propagation mechanism, one
parameter of interest is the cover time, the expected time it
takes to cover all the nodes in a network. Since the cover
time of the standard random walk can be large — Θ(n3) in
the worst case, Θ(n log n) even for expanders [35] — some
recent studies have studied simple adaptations of random
walks that can speed up cover time [1, 5, 18]. Our analysis
of cobra walks continues this line of research, with the aim
of studying a lightweight information dissemination process
that has the potential to improve cover time significantly.

Our primary motivation for studying cobra walks is their
close connection to SIS-type epidemic processes in networks.
The SIS (standing for Susceptible Infected Susceptible)
model (e.g., [20]) is widely used for capturing the spread of
diseases in human contact networks or propagation of viruses
in computer networks. Three basic properties of an SIS pro-
cess are: (a) a node can infect one or more of its neighbors
(“branching” property); (b) a node can be infected by one
or more of its neighbors (“coalescence” property) and (c) an
infected node can be cured and then become susceptible to
infection at a later stage. Cobra walks satisfy all these prop-
erties, while standard random walks and other gossip-based
propagation mechanisms violate one or more. Also, while
there has been considerable work on the SIS model ([28, 43,
31, 20, 40, 19, 6]), it has been analytically hard to tackle
basic coverage questions: (1) How long will it take for the
epidemic to infect, say, a constant fraction of network? (2)
Will every node be infected at some point, and how long
will this take? Our analysis of cobra walks in certain special
graph classes is a step toward a better understanding of such
questions for SIS-type processes.

1.1 Our results and techniques
We derive near-tight bounds on the cover time of cobra

walks on trees, grids, and expanders. These special graph
classes arise in many distributed network applications, es-
pecially in the modeling and construction of peer-to-peer
(P2P), overlay, ad hoc, and sensor networks. For example,
expanders have been used for modeling and construction of
P2P and overlay networks, grids and related graphs have
been used as models for ad hoc and sensor networks, and
spanning trees are often used as backbones for various infor-
mation propagation tasks.

We begin with an observation that Matthew’s Theorem
[37, 35] for random walks extends to cobra walks; that is,
the cover time of a cobra walk on an n-node graph is at most
lnn times the maximum hitting time of a node. Hitting time
is the expected time until a walk originating at u ∈ V reaches
v ∈ V for the first time. For many graphs, this bound is also
a tight bound. This enables us to focus on deriving bounds
for the hitting time.

We face two technical challenges in our analysis. First,
unlike in a standard random walk, cobra walks have mul-
tiple “active” nodes at any step, and in almost all graphs,

it is difficult to characterize the distribution of the active
nodes at any point of time. Second, the combination of the
branching and coalescing properties introduces a non-trivial
dependence among the active nodes, making it challenging
to quantify the probability that a given node is made active
during a given time period. Surprisingly, these challenges
manifest even in tree networks. We present a result that
gives tight bound on the cover time for trees, which we ob-
tain by establishing a recurrence relation for the expected
time taken for the cobra walk to cross an edge along a given
path of the tree.

• For an arbitrary n-node tree, a cobra walk with k ≥ 2
covers all nodes in O(n log n) steps with high proba-
bility (w.h.p., for short)1 (Theorem 5 of Section 3.1).

For a matching lower bound, we note that the cover time of
a cobra walk in a star graph is Ω(n log n) w.h.p. We conjec-
ture that the cover time for any n-node graph is O(n log n).
By exploiting the regular structure of a grid, we establish
improved and near-tight bounds for the cover time on d-
dimensional grids.

• For a d-dimensional grid, we show that a cobra walk
with k ≥ 2 takes Õ(n1/d) steps, w.h.p. (cf. Theorem 8
of Section 3.2).

Our main technical result is an analysis of cobra walks on
expanders, which are graphs in which every set S of nodes
of size at most half the number of vertices has at least α|S|
neighbors for a constant α, which is referred to as the ex-
pansion factor.

• We show that for an n-node constant-degree expander,
a cobra walk covers a constant fraction of nodes in
O(log n) steps and all the nodes in O(log2 n) steps
w.h.p. assuming that either the branching factor or
the expansion factor is sufficiently large (cf. Theorems
9 and 10 of Section 4).

Our analysis for expanders proceeds in two phases. We show
that in the first phase, which consists of O(log n) steps,
the branching process dominates resulting in an exponen-
tial growth in the number of active nodes until a constant
fraction of nodes become active, with high probability. In
the second phase, though a large fraction of the nodes con-
tinues to be active, dependencies caused by the coalescing
property prevent us from treating the process as multiple
independent random walks, analyzed in [2] (or even d-wise
independent walks for a suitably large d). We overcome
this hurdle by carefully analyzing these dependencies and
bounding relevant conditional probabilities, and define a
time-inhomogeneous Markov process that is stochastically
dominated by the cobra walk in terms of coverage. We then
use the notion of merging conductance and the machinery
introduced in [38] to analyze time-inhomogeneous Markov
chains, and establish an O(log n) bound w.h.p. on the max-
imum hiting time, leading to an O(log2 n) bound on the
cover time.

1.2 Related work and comparison
Branching and coalescing processes. There is a large
body of work on branching processes (without coalescence)

1By the term “with high probability” (w.h.p., for short) we
mean with probability 1 − 1/nc, for some constant c > 0.
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on various discrete and non-discrete structures [33, 36, 4]. A
study of coalescing random walks (without branching) was
performed in [15] with applications to voter models. Oth-
ers have looked at processes that incorporate branching and
coalescing particle systems [3, 41]. However, these stud-
ies treat the particle systems as continuous-time systems,
with branching, coalescing, and death rates on restricted-
topology structures such as integer lattices. To the best of
our knowledge, ours is the first work that studies random
walks that branch and coalesce in discrete time and on var-
ious classes of non-regular finite graphs.

Random walks and parallel random walks. Feige [24,
23] showed that the cover time of a random walk on any
undirected n-node connected graph is between Θ(n log n)
and Θ(n3) with both the lower and upper bounds being
achieved in certain graphs. With the rapidly increasing in-
terest in information (rumor) spreading processes in large-
scale networks and the gossiping paradigm (e.g., see [9] and
the references therein), there have been a number of studies
on speeding up the cover time of random walks on graphs.
One of the earliest studies is due to Adler et al [1], who stud-
ied a process on the hypercube in which in each round a node
is chosen uniformly at random and covered; if the chosen
node was already covered, then an uncovered neighbor of the
node is chosen uniformly at random and covered. For any
d-regular graph, Dimitrov and Plaxton showed that a simi-
lar process achieves a cover time of O(n + (n log n)/d) [18].
For expander graphs, Berenbrink et al showed a simple vari-
ant of the standard random walk that achieves a linear (i.e.,
O(n)) cover time [5].

It is instructive to compare cobra walks with other mecha-
nisms to speed up random walks as well as with gossip-based
rumor spreading mechanisms. Perhaps the most related
mechanism is that of parallel random walks which was first
studied in [7] for the special case where the starting nodes
are drawn from the stationary distribution, and in [2] for ar-
bitrary starting nodes. Nearly-tight results on the speedup
of cover time as a function of the number of parallel walks
have been obtained by [22] for several graph classes including
the cycle, d-dimensional meshes, hypercube, and expanders.
(Also see [21] for results on mixing time.) Though cobra
walks are similar to parallel random walks in the sense that
at any step multiple nodes may be selecting random neigh-
bors, there are significant differences between the two mech-
anisms. First the cover times of these walks are not com-
parable. For instance, while k parallel random walks may
have a cover time of Ω(n2/ log k) for any k ∈ [1, n] [22], a
2-branching cobra walk on a line has a cover time of O(n).
Second, while the number of active nodes in k parallel ran-
dom walks is always k, the number of active nodes in any
k-branching cobra walk is continually changing and may not
even be monotonic. Most importantly, the analysis of cover
time of cobra walks needs to address several dependencies
in the process by which the set of active nodes evolve; we
use the machinery of time-inhomogenous Markov chains to
obtain the cover time bound for bounded-degree expanders
(see Section 4).

The works of [16, 17] presented distributed algorithms for
performing a standard random walk in sublinear time, i.e.,
in time sublinear in the length of the walk. In particular,
the algorithm of [17] performs a random walk of length � in

Õ(
√
�D) rounds w.h.p. on an undirected network, where

D is the diameter of the network. However, this speed

up comes with a drawback: the message complexity of the
above faster algorithm is much worse compared to the naive
sequential walk which takes only � messages. In contrast, we
note that the speedup in cover time given by a cobra walk
over the standard random walk comes only at the cost of a
slightly worse message complexity.

Gossip-based mechanisms. Gossip-based information
propagation mechanisms have also been used for information
(rumor) spreading in distributed networks. In the most typ-
ical rumor spreading models, gossip involves either a push
step, in which nodes that are aware of a piece of information
(being disseminated) pass it to random neighbors, or a pull
step, in which nodes that are unaware of the information at-
tempt to extract the information from one of their randomly
chosen neighbors, or some combination of the two. In such
models, the knowledgeable nodes or the ignorant nodes par-
ticipate in the dissemination problem in every round (step)
of the algorithm. The main parameter of interest in many
of these analyses is the number of rounds needed till all the
nodes in the network get to know the information.

The rumor spreading mechanism that is most closely re-
lated to cobra walks is the basic push protocol, in which in
every step every informed node selects a random neighbor
and pushes the information to the neighbor, thus making it
informed. Feige et al. [25] show that the push process com-
pletes in every undirected graph in O(n log n) steps, with
high probability. Since then, the push protocol and its vari-
ants have been extensively analyzed both for special graphs,
as well as for general graphs in terms of their expansion
properties (see e.g., [10, 11, 12, 30, 29, 27, 26]). Again,
though cobra walks and push-based rumor spreading share
the property that multiple nodes are active in a given step,
the two mechanisms differ significantly. While the set of ac-
tive nodes in rumor spreading is monotonically nondecreas-
ing, this is not so in cobra walks, an aspect that makes the
analysis challenging especially with regard to full coverage.
Furthermore, the message complexity of the push protocol
can be substantially different than that of cobra. A simple
example is the star network, which the push protocol covers
in Θ(n log n) steps with a message complexity of Θ(n2 log n),
while the 2-branching cobra walk has both cover time and
message complexity Θ(n log n). This can be extended to
show similar results for star-based networks that have been
proposed as models for Internet-scale networks [14].

1.3 Applications
As mentioned at the outset, cobra walks are closely related

to the SIS model in epidemics, but they may be easier to
analyze using tools from random walk and Markov chain
analyses. While the persistence time and epidemic density of
SIS-type epidemic models are well studied [28, 34, 43], to the
best of our knowledge the time needed for a SIS-type process
to affect a large fraction (or the whole) of the network has
not been well-studied. Our results and analyses of cobra
walks on more general networks can be useful in predicting
the time taken for a real epidemic process following an SIS-
type model to spread in a network.

Cobra walks can also serve as a lightweight information
dissemination protocol in networks, similar to the push pro-
tocol. As pointed out earlier, in certain types of networks,
the message complexity incurred by a cobra walk to cover
a network can be smaller than that for the push protocol.
This can be useful, especially in infrastructure-less anony-
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mous networks, where nodes don’t have unique identities
and and may not even know the number of neighbors. In
such networks, it is difficult to detect locally when coverage
is completed2. If nodes have a good upper bound on n (the
network size), however, then nodes can terminate the proto-
col after a number of steps equal to the estimated cover time.
In such a scenario, message complexity is also an important
performance criterion.

2. PRELIMINARIES
Let G be a connected graph with vertex set V and edge

set E, and let |V | = n. We define a coalescing-branching
(cobra) random walk on G with branching factor k starting
at some arbitrary v ∈ V as follows: At time t = 0 we place
a pebble at v. Then in the next and every subsequent time
step, every pebble in G clones itself k − 1 times (so that
there are now k pebbles at each vertex that originally had a
pebble). Each pebble independently selects a neighbor of its
current vertex uniformly at random and moves to it. Once
all pebbles make their one-hop moves, if two pebbles are
at the same vertex they coalesce into a single pebble, and
the next round begins. In a cobra-walk, a vertex receive a
pebble an arbitrary number of times.

For a time step t of the process, let St be the active set,
the set of all vertices of G that have a pebble. We will
use two different definitions of the neighborhood of St: Let
N(St) be the inclusive neighborhood, the union of the set of
neighbors of all vertices in St (which can include members of
St itself). Let Γ(St) be the non-inclusive neighborhood,
which is the union of the set of neighbors of all vertices of
St such that St ∩ Γ(St) = ∅.

Let the expected maximum hitting time hmax of a
cobra-walk on G be defined as the maxu,v∈V E[hu,v] where
hu,v is the time it takes a cobra-walk starting at vertex u to
first reach v with at least one pebble.

We are interested in two different notions of cover time,
the time until all vertices of G have been visited by a cobra-
walk at least once. Let τv be the minimum time t such that,
for a cobra-walk starting from v, ∀u ∈ V − v, u ∈ St for
some t ≤ τv which may depend on u. Then we define the
cover time of a cobra-walk on G to be maxv∈V τv. We
define the expected cover time to be maxv∈V E[τv]. Note
that in the literature for simple random walks, cover time
usually refers to the expected cover times. In this paper we
will show high-probability bounds on the cover time.

In Section 6 we will be proving results for cobra-walks on
expanders. In this paper, we will use a spectral definition
for expanders and then use Tanner’s theorem to translate
that to neighborhood and cut-based notions of expanders.

Definition 1. An ε-expander graph is a d-regular
graph whose adjacency matrix has eigenvalues αi such that
|αi| ≤ εd for i ≥ 2.

We also want to define the notion of an ε-approximation:

Definition 2. G is an ε-approximation for a graph H
if (1 − ε)H � G � (1 + ε)H, where H � G if for all x,
xTLHx ≤ xTLGx, where LG and LH are the Laplacians of
G and H, respectively.

2In networks with identities and knowledge of neighbors, a
node can locally stop sending messages when all neighbors
have the rumor. This reduces the overall message complexity
until cover time.

Finally, we will rely on the neighborhood expansion of a
set S on G, where we define N(S) as the inclusive neigh-
borhood. For this we will use Tanner’s theorem [42], which
gives us a lower bound on the size of the neighborhood of S
for sufficiently strong expanders.

Theorem 3. Let G be a d-regular graph that ε- approxi-
mates d

n
Kn. Then for all S ⊆ V with |S| = δn, |N(S)| ≥

|S|
ε2(1−δ)+δ

·

3. COVER TIME FOR TREES AND GRIDS
A useful tool in bounding the cover time for simple ran-

dom walks is Matthew’s Theorem [37, 35], which bounds the
expected cover time of a graph by the maximum expected
hitting time hu,v between any two nodes u and v times the
harmonic number Hn. Here we show that this result can
be extended to cobra walks. The full proof can be found
in the full version of the paper, but the key idea is that we
map the cobra walk on G to a simple walk on much larger
graph derived from G and then show that this satisfies the
conditions for the proof of Matthew’s Theorem on simple
walks.

Theorem 4. Matthew’s Theorem for Cobra Walks
Let G be a connected graph on n nodes. Let w be a cobra
walk on G starting at an arbitrary node. Then the cover-
time of w on G, C(G), is bounded from above by hmax lnn
in expectation and by O(hmax lnn) with high probability.

Matthew’s theorem for cobra walks is used in proving the
cover time for trees and grids.

3.1 Trees

Theorem 5. For any tree, the cover time of a cobra walk
starting from any node is O(n lnn) w.h.p.

We will prove our main result by calculating the maximum
hitting time of a cobra walk on a tree T and then applying
Matthew’s theorem. Cobra walks on trees are especially
tractable because they follow two nice properties. Since a
tree has a unique path between any two nodes, we only need
keep track of the pebble closes to the target. In addition,
the fact that there is one simple path between any two nodes
limits the number of collisions we need to keep track of, a
property which is not true for general graphs and makes
cobra walk harder to analyze on them. For this section, we
fix the branching factor k = 2. For k > 2 but still constant,
the cover time would not be asymptotically better.

The general idea behind the proof is as follows. We take
the longest path w.r.t. hitting time in the tree. Along each
node in this path, except for the first and last, there will
be a subtree rooted at that node. If a cobra walk’s closest
pebble to the endpoint is at node l, the walk from this point
can either advance with at least one pebble, or it can not
advance by either backtracking along the path, going down
the subtree rooted at l, or both. We show via a stochas-
tic dominance argument that a biased random walk from l,
whose transition probabilities are tuned to be identical to
cobra walk’s, will next advance to l + 1 in a time that is
dominated primarily by the size of the subtree at l. This is
done by analyzing the return times in the non-advancement
scenarios listed above. Thus summing up over the entire
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walk, the hitting time is dominated by a linear function of
the size of the entire tree.

In Lemma 6 we bound the return time of a cobra walk to
a root of the tree.

Lemma 6. Let T be a tree of size M . Pick a root, r, and
let r have d children. Then a cobra walk on T starting at r
will have a return time to r of O(4M/d).

Proof. To show that the Lemma holds for a cobra walk,
we will actually show that it holds for a simple random walk
with transition probabilities modified to resemble those of a
cobra walk. For this simple random walk, we start at r and
in the first step pick one of the children of r, r′. Let (d′+1) be
the degree of r′. Then we define transition probabilities as
follows: p is the probability of returning to r in the next step,
and q is the probability of continuing down the tree. They

are given as: p =

(
1−

(
d′

(d′ + 1)

)2
)
, q =

(
d′

(d′ + 1)

)2

,

p
q
= (d′)2

(2d′+1)
. Note that these are the exact same probabil-

ities that a cobra walk at node r′ would have for sending
(not sending) at least one (any) pebbles back to the root.

The rest of the proof follows by mathematical induction.
Consider a tree T that has only two levels. Starting from r,
the return time, 2, is constant, the relationship holds. For
the inductive case, assume that the hypothesis holds. Then:

r(T ) ≤ 1 +
∑

r′∈N(r)

p(r′)hr′,r ≤ 1 +
1

d

∑
r′∈N(r)

hr′,r

≤ 1 +
1

d

∑
r′∈N(r)

(
1 +

d′2

2d′ + 1
c
|T ′|
d′

)

≤ 2 +
c|T |
2d

Setting c = 4 gives us the result of the lemma for the bi-
ased random walk, and it is easy to see that by stochastic
dominance this holds also for the cobra walk.

Finally, we show a key lemma for the hitting time of a
single step of a path along a tree.

Lemma 7. Fix a path in a tree T made up of nodes
1, . . . , l, (l + 1), . . . , t. Then, the expected time it takes for
a cobra walk starting at node l to get to l + 1 with at least
one pebble is given by:

hl,(l+1) =
5

4
+

12

5

2∑
i=l

(
1

5

)l−i

|Ti| (1)

where Tl is the induced subtree formed by taking node l, its
neighbors not on the path being traversed, and all of their
descendants.

Informally, we prove that the one-step hitting time is
bounded by above by the worst case scenario that either
both pebbles go back along the path or down the subtree
rooted at l and establish a simple recurrence relation.

Proof. Vertex l is viewed through the context of having
one edge to the node l − 1, one edge to node l, and d edges
to some other nodes. Thus it can be viewed as the root of
a tree, and Tl as the induced subgraph of l and all nodes
reached through its dl not-on-path children. We will need
the following probabilities:

• Probability of a pebble going from l to l + 1 = p =(
1−

(
(dl + 1)

(dl + 2)

)2
)

• Probability of a pebble not going from l to l + 1 =
1− p = q.

• Probability of a cobra walk sending both pebbles from
l to l − 1 conditioned on it not sending any pebbles

from l to l + 1 = q
′
l =

(
1

(dl + 1)2

)

• Probability of a cobra walk sending at least one pebble
to the subtree Tl conditioned on its not sending any

pebbles to l+1 = q
′′
l =

(
(dl)

(dl + 1)

)2

+2

(
dl

(dl + 1)2

)
=

d2l + 2dl
(dl + 1)2

Note that, conditioned on a pebble not advancing to node l+
1, we actually have three disjoint events: (A) Both pebbles
go to l − 1, (B) one pebble goes to l − 1 and one pebble
goes into subtree Tl, and (C) both pebbles go into Tl. We
define an alternate event B′, which is the event that one
pebble goes down Tl and nothing else happens (thus, it is
not technically in the space of cobra walk actions). If we
let R be the time until first return of the cobra walk to l
conditioned on no pebble going to l + 1, we wish to show
that E[R|B] ≤ E[R|B′] and that E[R|C] ≤ E[R|B′]. What
is the relationship between B and B′? Consider two random
variables, X and Y , and let X be the time until first return
of a pebble that travels from l to l − 1, Y be the time until
first return of a pebble that travels into Tl. Then R|B is just
another random variable, U = min(X,Y ). Since U ≤ Y over
the entire space, E[U ] ≤ E[Y ], and clearly R|B′ is equivalent
to Y. Thus E[R|B] ≤ E[R|B′] It is also easy to see that
E[R|B′] ≥ E[R|C]. Thus by the law of total expectation we
have:

E[R] = E[R|A] Pr(A) +E[R|B] Pr(B) + E[R|C] Pr(C)

≤ E[R|A] Pr(A) + (Pr(B) + Pr(C))E[R|B′]

= E[R|A] Pr(A) +E[R|B′](1− Pr(A))

Then the hitting time can be expressed as:

hl,l+1 ≤ p+ q(E[R] + hl,l+1)

⇒ (1− q)hl,l+1 ≤ p+ q(E[R])

⇒ hl,l+1 ≤ 1 +
q

p
(q

′
l (1 + hl−1,l) + q

′′
l r(Tl))

Note that q/p = (dl+1)2

(2dl+3)
. Since r(Tl) ≤ 4|Tl|/dl by Lemma

6, we continue with: hl,l+1 ≤ 1+ (dl+1)2

(2dl+3)
1

(dl+1)2
(1+hl−1,l)+

(dl+1)2

(2dl+3)

(d2l +2dl)

(dl+1)2
4|Tl|
dl

≤ 1 + 1
5
(1 + hl−1,l) +

12
5
|Tl| w.h.p.

If we expand the relation, we get: hl,l+1 ≤ ∑l
i=0

(
1
5

)i
+

12
5

(
|Tl|+

(
1
5

) |Tl−1|+
(
1
5

)2 |Tl−2|+ · · ·+ ( 1
5

)l−2 |T2|
)
, and

thus hl,l+1 ≤ 5
4
+ 12

5

∑2
i=l

(
1
5

)l−i |Ti|
We are finally ready to prove our main results for the tree,

Theorem 5, that the cobra walk cover time of an arbitrary
tree occurs in O(n lnn) steps.

Proof. By Matthew’s Theorem for cobra walks, C(G) ≤
(lnn+ o(1))hmax. We just need to prove that hmax occurs
in linear time.
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Let P be the path for which hu,v is maximized, and let the
path consist of the sequence of nodes 1, 2, . . . , t. As in the
proof of the single-step hitting time, we note that for all but
the first and last nodes on P , there is a subtree Tl of size |Tl|
rooted at each nodes. Because h1,t ≤ h1,2 + h2,3 + . . . ht−1,t

we obtain the desired result from Lemma 7 as follows:

h1,t ≤ 5

4
t+

12

5

t−1∑
j=2

[
|Tj |

∞∑
i=0

(
1

5

)i
]

≤ 5

4
t+

12

5

5

4

t−1∑
j=2

|Tj | ≤ 4n.

We note that for the line network, we can improve the bound
we obtain for trees and show that the cover time of a cobra
walk is O(n) w.h.p.

3.2 Grids
For a d-dimensional grid, we show the following theorem

whose proof is in the full version.

Theorem 8. Let G be a finite d-dimensional grid for
some constant d, without wrap-around edges. Then the cover
time of a cobra walk on G is Õ(n1/d) w.h.p for branching
factor k = 2.

Here we present a sketch of the proof, which can be found
in the long version of the paper.

Consider a cobra-walk which starts at the origin of the lat-
tice (0, . . . , 0). In each step of the cobra-walk, we define the
following process to determine which pebble we are tracking
as we move towards the target vertex (n1/d, . . . , n1/d). We
focus on one dimension at a time. W.l.o.g. consider the first
dimension. We refer to a +1 motion as movement in the
“right” direction (towards the first coordinate of the target)
and −1 as a movement away from the target in the first di-
mension. From the current node, two pebbles pick neighbors
uniformly at random. We follow a pebble that makes most
progress in the direction of the target along the first dimen-
sion. That is, if one of the pebbles goes to the neighbor
in the +1 direction, we track that pebble and move to the
node it selected. If both pebbles pick the −1 neighbor, we
move to that neighbor. Otherwise, we randomly pick one of
the nodes that were selected by the pebbles and note there
was a movement of 0 in the first dimension. Projecting this
process onto the first dimension, we have a biased random
walk (towards the target) in that dimension. After O(n1/d)
steps, we can use a large deviation bound (e.g. Theorems
2.8 and 2.8 in [13]) to show that with constant probability,

we reach the target’s first coordinate value to within n1/2d

distance.
What is happening in the other coordinates? It is easy to

see that projecting our walk described above on any other
dimension creates an unbiased random walk over that di-
mension. Hence, after O(n1/d) steps, with constant proba-

bility, we are within n1/2d steps of the position we started
in.

After approaching the target in the first dimension, we
repeat the process in the other dimensions. Each dimension
requires O(n1/d) steps. At the end of the first phase, with
constant probability, for each coordinate, we are at most

n1/2d steps away from the target. We keep doing this for
log log n phases. At the end of phase i we are a distance at

most n
1

d2i+1 from the target with probability pi for some
constant 0 < p < 1. After log log n phases the walk will
be within O(1) distance (in each dimension) from the target
with probability 1/polylog(n).

The last O(1) steps to the target can be made by the walk
by taking O(1) “advance” steps, which will happen with at

least a constant probability. Thus, in O(n1/d) steps we reach
the target with probability 1/polylog(n).

In expectation, we will reach the target after
O(n1/dpolylog(n)) steps. Applying Matthew’s bound yields
the result of the lemma.

4. ANALYSIS FOR EXPANDERS
For expander graphs, we are able to prove a high prob-

ability cover time result of O(log2 n). We break the proof
up into two phases. In the first phase we show that a cobra
walk starting from any node will reach a constant fraction
of the nodes in logarithmic time w.h.p. In the second phase,
we create a process which stochastically dominates the cobra
walk and show that this new process, will cover the entire
rest of the graph again in polylogarithmic time w.h.p.

The main result of this section can be stated in the fol-
lowing two theorems, which when taken together imply that
w.h.p. ε-expander G will be covered in O(log2 n) time.

Theorem 9. Let G be any ε-expander with ε, δ not de-
pending on n (number of nodes in G), with δ < 16

30d2
, and ε,

a sufficiently small constant such that

1

ε2(1− δ) + δ
>

d(de−k + (k − 1)) − k2

2

d(e−k + (k − 1))− k2

2

, (2)

then in time O(log n), w.h.p. a cobra walk on G with branch-
ing factor k, will attain an active set of size δn.

We note that the condition in the above theorem is satisfied
if either ε is sufficiently small, or k is sufficiently large. For
instance when k = 2, the above condition holds for strong
expanders, such as the Ramanujan graphs, which have ε ≤
2
√
d− 1/d, and random d-regular graphs, for d sufficiently

large.

Theorem 10. Let G be as above, and let W be a cobra
walk on G that at time T has reached an active set of size
δn. Then w.h.p in an additional O(log2 n) steps every node
of G will have visited by W at least once.

To prove Theorem 9 we prove that active sets up to a
constant fraction of V are growing at each step by a factor
greater than one. The proof can be found in the full version.

Lemma 11. Let G be any ε-expander with ε, δ satisfying
the conditions of Theorem 9. Then for any time t ≥ 0,
the cobra walk on G with active set St such that |St| ≤ δn
satisfies E[|St+1|] ≥ (1 + ν)|St| for some constant ν > 0.

Next, we use a standard martingale argument to show
that the number of nodes in St is concentrated around its
expectation. The proof of Lemma 12 can also be found in
the full version of the paper.
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Lemma 12. For a cobra walk on a d-regular ε-expander
that satisfies the conditions in Lemma 11, at any time t

Pr [|St+1| − E[|St+1|] ≤ −τ |St|] ≤ e
−
τ 2|St|
2k (3)

Finally, using the bound of Lemma 12 we show that with
high probability we will cover at least δn of the nodes of G
with a cobra walk in logarithmic time by showing that the
active set for some t = O(log n) is of size at least δn.

Lemma 13. For a cobra walk on d-regular, ε-expander G,
there exists a time T such that T = O(log n) and |ST | ≥ δn.

The key to proving Lemma 13 is to view a cobra-walk on
G as a Markov process over a different state space consisting
of all of the possible sizes of the active set. In this interpre-
tation, all configurations of pebbles in a cobra-walk in which
i nodes are active are equivalent. The goal is to show that
this new Markov process will reach a state corresponding
to an active set of size δn quickly w.h.p. To prove this, we
first show that it is dominated by a restricted Markov chain
over the same state space in which any negative growth in
the size of the active set is replaced with a transition to the
initial state (in which only one node is active). We then in
turn show that the restricted walk is dominated by an even
more restricted walk in which the probability of negative
growth is higher than in the first restricted walk, bounded
from below from a constant, and no longer dependent on the
size of the current state. We then show that the goal of the
lemma is achieved even in this walk by relating the process
to a negative binomial random variable.

Proof. We view a cobra-walk on G as a random walk
W over the state space consisting of all of the possible sizes
of the active set: S(W ) = {1, . . . , n}. We then define a
Markov process M1 that stochastically dominates W : Let
τ = ν/2, where ν is the expected growth factor of the active
set as shown in Lemma 11. The states of M1, S(M1) are
the same as W ’s, but the transitions between states differ.
Each i ∈ S(W ) can have out-arcs to many different states,
but the corresponding i ∈ S(M1) has only two transitions.

With probability pi = 1−e−
ν2i
8k transition to state (1+ν/2)i,

and with probability 1− pi transition to state 1. Note that
pi is derived from Lemma 12.

In M1, each transition probability is still a function of the
current state i, and as mentioned above we would like to
eliminate this dependence. Thus, define M2 as a random
walk over the same state space. However, we will deal only
with a subset of S(M2): the states: (1 + ν/2)iC for i ∈ Z

and a suitably large constant C. We then have the following
transitions for each state in the chain (which will begin once
it hits C). Setting r = ν2/8k, at state (1 + ν/2)iC : 1)
Transition to state (1 + ν/2)i+1C with probability p′i = 1−
e−rC(1+ iν

2
) 2) Transition to state C with probability 1 −

p′i. This Markov chain oscillates between failure (going to
C) and growing by a factor of 1 + ν/2. Note that to get
success (i.e., reaching a state of at least δn), we need Ω(log n)
growing transitions.

The probability that in a walk on this state space that we
“fail” and go back to C before hitting δn is bounded by 1/2,

since
∑∞

i=0 e
−rC(1+iν

2
) ≤ e−rC∑∞

i=0 e
irC ν

2 = e−rC

1−e
−rC ν

2
≤

1
2
, provided that C is sufficiently large as a function of r

(which is itself only a function of the branching factor and
the constant ν).

Consider each block of steps that end in a failure (mean-
ing we return to C). Then clearly w.h.p. after b log n trials,
for some constant b, we will have a trial that ends in suc-
cess (i.e., reaching an active set of size δn nodes). In these
b log n trials, there are exactly that many returns to C. How-
ever, looking across all trials that end in failure, there are
also only a total of O(log n) steps that are successful (i.e.,
involve a growth rather than shrinkage). To see why this
is true, note that the probability of a failure after a string
of growth steps goes down supralinearly with each step, so
that if we know we are in a failing trial it is very likely that
we fail after only a few steps. Thus, there cannot be too
many successes before each failure. Indeed, the probability
that we fail at step i within a trial can be bounded. Thus
Pr [Failure at step i | eventual failure]

=
Pr [Failure at step i]

Pr [Eventual failure]

=
e−rC(1+iν/2)∑∞

i=1

(∏l−1
j=1(1− e−rC(1+jν/2)

)
e−rC(1+lν/2)

≥ 1∑∞
i=1 e

−irCν/2
≥ 1− e−rCν/2

and thus the probability of advancing is no more than
e−rCν/2, also a quantity that does not depend on i. This is a
negative binomial random variable with distribution w(k, p),
the number of coin flips needed to obtain k heads with heads
probability p. Identifying heads with a failure (i.e. returning
to C) and tails with making a growth transition, we have
a random variable w(k, p), the number of coin flips needed

for k failures with probability of failure p = 1 − e−rCν/2.
It is well known that Pr [w(k, p) ≤ m] = Pr [B(m,p) ≥ k],
where B(m,p) is the binomial random variable counting
the number of heads within m p-biased coin flips. Thus,
Pr [w(k, p) > m] = Pr [B(m, p) < k]. Setting k = a log n
and m = b log n, we have, Pr [B(m,p) ≤ E[B(m, p)]− t] =

Pr [B(m,p) < pm− t] ≤ e
−2t2

m . We let k = pm − t, and
solving for t we get t = (pb− a) log n. This gives us

Pr [B(m,p) < k)] ≤ 1

n
(pb−a)2

b

,

establishing there are at most O(log n) success within
O(log n) trials ending in failure. Via stochastic dominance
this bound holds for our original cobra walk process.

Once the active set has reached size Ω(n), we need a dif-
ferent method to show that the cobra-walk achieves full cov-
erage in O(log2 n) time. We can not simply pick a random
pebble and restart the cobra-walk from this point O(log n)
times because we know nothing about the distribution of the
δn pebbles after restart, and the restarting method would
require the pebbles to be i.i.d. uniform across the nodes of
G. As a result, we are unable to establish a straightforward
bound on hmax and invoke Matthew’s Theorem.

Hence, we develop a different process, which we will call
Walt, that is stochastically dominated by the cobra walk.
In Walt, no more branching or coalescing occurs, and we
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also modify the transition probabilities of the pebbles on a
node-by-node basis, depending on the number of pebbles at
a node.

Definition 14. For any time t and any collection of S
pebbles on V (there can be more than 1 pebble at a node),
define Walt(t+ 1) as follows. Let A ⊆ V be the set of all
nodes with 1 pebble at time t. Let B ⊆ V be the set of all
nodes with exactly 2 pebbles, and let C be the set of all nodes
with more than 2 pebbles. Then, (a) for every v ∈ A, the
pebble at v uniformly at random selects a node in N(v) and
moves to it; (b) for every v ∈ B, each pebble at v uniformly
at random selects its own node in N(v) and moves to it;
(c) for every v ∈ C, arbitrarily order the pebbles at v, the
first two pebbles then pick a neighbor to hop to uniformly at
random. The remaining pebbles then pick with probability
1/2 one of the two neighbors already selected and move to
that node.

If at time t a node during process Walt has two or more
pebbles, at each time step it behaves identically to a node
running a cobra walk. On the other hand, if there is only
one pebble at node runningWalt it acts like a simple random
walk. Thus the number of active nodes at the next time
step in Walt is a (possibly proper) subset of the nodes with
pebbles if the graph were running the cobra walk instead.
Since this will be true at every time step, Walt stochastically
dominates the cobra walk w.r.t cover time τ of G, and it will
be enough to prove the following:

Theorem 15. Let G be a bounded-degree d-regular ε -
expander graph, with ε sufficiently high to satisfy the con-
ditions in Lemma 11. Let there be δn pebbles distributed
arbitrarily over V , with at most one pebble per node. Let

δ <
16

30d2
. Let λ be the second-largest eigenvalue of the adja-

cency matrix of G. From our ε-expander definition, λ ≤ εd.
For every ε, there is a constant ε′ that is the node expansion

constant of G. Furthermore, let constant γ = ε′
ε2(1−δ)+δ

,

and let s = 5 log n+6 log d+log 9

− log

(
1− 1

2

(
γ

64d10

)2
) . Starting from this configu-

ration, the cover time of Walt on G is O(log2 n), with high
probability.

Proof. Our proof relies on showing that each node in G
has a constant probability of being visited by at least one
pebble during an epoch of Walt lasting Θ(logn) time. Once
this has been established, all nodes of G will be covered
w.h.p. after O(log n) epochs lasting Θ(log n) steps each.

Define Ei to be the event that pebble i covers an arbitrary
node v in s steps. We want to prove that the probability that
v is covered by at least one pebble, Pr

[⋃
i Ei

]
, is constant.

Using a second-order inclusion-exclusion approximation:

Pr

[⋃
i

Ei

]
≥

∑
i

Pr [Ei]−
∑
i�=j

Pr [Ei ∩Ej ]

=
∑
i

Pr [Ei]−
∑
i�=j

Pr [Ei] Pr [Ej |Ei] .

As a marginal probability, Pr [Ei] can be viewed as the prob-
ability that the random walk of pebble i hits v at time s.
Thus, we only need to look at the elements of zAi, where A
is the stochastic matrix of the simple random walk on G and
z is a vector with z(l) = 1 for the l, the position of pebble i

at the beginning of the epoch and 0 in all other positions. In

[2] it is proved in Lemma 4.8 that each coordinate of As′z
differs from 1/n by at most 1

2n
for s′ = ln 2n

ln ε
. Since s > s′,

this hold for our case as well. Thus Pr [Ei = 1] ≥ 1
2n

.
Next we establish an upper bound for Pr [Ej |Ei]. Due

to the conditioning on the walk of pebble i, we can’t use
the transition matrix Ai, but we would like to do something
similar. The transition matrix governing the walk of pebble
j conditioned on a fixed walk of pebble i can be character-
ized at each step by transition matrix Pl(i,t), where l(i, t) is
the location of pebble i at time t, can be described as fol-
lows. For every row k of Pl(i,t) s.t. k �= l(i, t) we have an

exactly copy of the kth row of A, the transition matrix of
an independent random walk on G. When k = l(i, t) this
represents the walk of j when pebbles i and j are co-located
at node k. To establish an upper bound, we assume the
worst case, that j is ordered as the 3rd or higher pebble
at k. Let τ be the neighbor of node k chosen by pebble
i. Then P [k, τ ] = 1/2 + 1/2d, and for all other positions
of row k where A is non-zero, the corresponding position
in P = 1/2d. These represent the transition probabilities
according to Walt as described earlier.

From an initial probability distribution z chosen over
V (G), the probability of pebble j being at node v condi-
tioned on the walk of pebble i is the vth component of
z
∏s

t=1 Pl(i,t). In Lemma 16 we show that the largest compo-

nent of z
∏s

t=1 Pl(i,t) is no more than 5d2

2n
. With this result,

we then have:

Pr
[⋃

Ei

]
≥

∑
i

Pr [Ei]− 1

2

∑
i�=j

Pr [Ei] Pr [Ej |Ei]

≥ δn
1

2n
− 1

2

(
δn

2

)
3

2n

5d2

2n

≥ δ

2
− 15

16
δ2d2

which will be a constant for the sufficiently small δ (depend-
ing only on d) given in the statement of the Theorem.

Lemma 16. Let G, γ, ε′, and s be as stated in Theorem 15.
Let i and j be two pebbles walking according to the rules of
Walt on G. Fix the walk of i, and let {Pl(i,t)} be the sequence
of perturbed transition matrices for the walk of pebble j de-
pending on i. Then starting i from an arbitrary node, after s
steps, the probability that j is at any node is at most 5d2/2n.

Proof. The proof of this lemma relies heavily on Theo-
rem 3.2 in [32], which we review and state here. Let P be
an irreducible, ergodic Markov process for which reversibil-
ity and strong aperiodicity are not required. Consider the
weighted transition from state i to j, wij = πipij , where πi

is the stationary distribution of i and pij is the transition
probability from i to j of P . For A ⊂ V , we define the
merging conductance of set A as

Φ∗
P (A) =

∑
j1∈A

∑
j2∈V −A

∑
i

wj1iwj2i

πi∑
i∈A πi

(4)

The merging conductance of graph G is thus

Φ∗
P (G) = min

A⊂S:
∑

i∈A πi≤ 1
2

Φ∗
P (A)

Intuitively, the merging conductance can be viewed as a
measure of the flow coming into all nodes from both A and
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V − A for some set A. The higher the merging conduc-
tance of a graph, the more well connected it is and evenly

distributed the flow is. If we define ‖�x(t)‖ =
∑ (pi(t)−πi)

2

πi

to be a measure of the distance of a distribution �p over V
from the stationary distribution of P , then [38] gives us the
following theorem, which indicates that for a graph ğwith
merging conductance bounded away from zero, convergence
to the stationary distribution occurs in logarithmic time.

Theorem 17 ([38, Theorem 3.2]). For an arbitrary
initial distribution �x(0) over V

‖�x(t)‖ ≤ (1− 1

2
(Φ∗

P )
2)t‖�x(0)‖

We also need the following lemma for bounds on the max-
imum and minimum of the stationary distribution of the
conditional walk of pebble j.

Lemma 18. For the walk of pebble j as described on Walt

for a suitable d-regular ε-expander G, conditioned on the
walk of pebble i. the stationary distribution of the walk of j

has bounds πmin ≥ 1
2nd2

and πmax ≤ 2d2

n
.

Next we establish a lower bound for the number of terms
in the sum in the numerator of Equation 4. Let A be the
set for which Φ∗

P (G) is minimized. Furthermore, since G is
an ε-expander, we also know that its cobra walk expansion
is a constant ε′ and depends only on ε. We would like to
calculate the number of nodes in G that have at least one
neighbor in A and at least one neighbor in V − A. First,
we lower-bound the size of the set of nodes with at least one
edge to A. This set is just N(A), the inclusive neighborhood
of A, which from Tanner’s theorem can be bounded from

below by |A|
ε2(1−δ)+δ

. Of the node in N(A), we also need

to bound the number that also have at least one edge to
V −A. However, this is just the non-inclusive neighborhood
of N(A), Γ(N(A)), and we can use the node expansion of G

to show that |Γ(N(A))| ≥ ε′|A|
ε2(1−δ)+δ

. Thus we get:

Φ∗
P (G) ≤ ε′|A|

ε2(1− δ) + δ

π2
min(1/2d)2

πmax

|A|πmax

≤ ε′

ε2(1− δ) + δ

(
1

2d2

)2(
1

2d

)2
1

n2

( n

2d2

)2
≤ ε′

ε2(1− δ) + δ

1

64d10

Letting γ = ε′
ε2(1−δ)+δ

, we note that the expression above is

a constant as long as d, ε, δ, ε′ are constants, which will be
true in a d-regular ε-expander.

Starting from a distribution �x(0) whose norm ‖�x(0)‖ will
be maximized when the walk is started from node s.t. πi =
πmin, we have:

‖�x(0)‖ ≤ (1− πmin)
2

πmin
+ (n− 1)

(πmax)
2

πmin

≤ 2d2n+ (n− 1)

(
2d2

n

)2

(2d2n)

≤ 2d2n+ 8d6 < 9d6n

for d > 1. Finally, we want to show that ‖�x(s)‖ < 1
n4 .

With this, it is clear to see that the maximum difference

|pi(t)−πi| < 1
n2 which implies that the maximum probabil-

ity Pr [Ej |Ei] <
2d2

n
+ 1

n2 < 5d2

2n
as required in Theorem 15.

To do this we need to show that
(
1− 1

2

(
γ

64d10

)2)s ≤ 1
9d9n5 ,

which will be true for the set value of s in the definition of
the Theorem.

A final note: because Φ∗
P (G) ≤ γ

64d10
for every matrix

Pl(i,t), we can apply Theorem 17 in the exponentiation even
though each matrix is different.

5. CONCLUSION
We studied a generalization of the random walk, namely

the cobra walk, and analyzed its cover time for trees, grids,
and expander graphs. The cobra walk is a natural random
process, with potential applications to epidemics and gossip-
based information spreading. We plan to explore further
the connections between cobra walks and the SIS model,
and pursue their practical implications. From a theoreti-
cal standpoint, there are several interesting open problems
regarding cobra walks that remain to be solved. First is
to obtain a tight bound for the cover time of cobra walks
on expanders. Our upper bound is O(log2 n), while the di-
ameter Ω(log n) is a basic lower bound. Another pressing
open problem is to determine the worst-case bound on the
cover time of cobra walks on general graphs. It will also be
interesting to establish and compare the message complex-
ity of cobra walk with the standard random walk and other
gossip-based rumor spreading processes.
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