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Abstract
We show a tight lower bound of Ω(N log log N) on the
number of transmission required to compute the parity of
N bits (with constant error) in a network of N randomly
placed sensors, communicating using local transmissions,
and operating with power near the connectivity threshold.
This result settles a question left open by Ying, Srikant and
Dullerud (WiOpt 06), who showed how the sum of all N bits
can be computed using O(N log log N) transmissions.

Earlier works on lower bounds for communication net-
works worked with the full broadcast model without using
the fact that the communication in real networks is local,
determined by the power of the transmitters. In fact, in
full broadcast networks parity can be computed using O(N)
transmissions. To obtain our lower bound we employ tech-
niques developed by Goyal, Kindler and Saks (FOCS 05),
who showed lower bounds in the full broadcast model by re-
ducing the problem to a model of noisy decision trees. How-
ever, in order to capture the limited range of transmissions
in real sensor networks, we define and work with a localized
version of noisy decision trees. Our lower bound is obtained
by exploiting special properties of parity computations in
such decision trees.

1 Introduction

Since inexpensive wireless technology and sensing hard-
ware are expected to be widely available and used, much
recent effort has been devoted to developing models for
these networks and protocols based on these models.
A wireless sensor network consists of sensors that col-
lect and cooperatively process data in order to compute
some global function. The sensors interact with each
other by transmitting wireless messages based on some
protocol. The protocol is required to tolerate errors in
transmissions since wireless messages typically are noisy.

In the problem we study, each sensor is required
to detect a bit; then, all the sensors are required to
collectively compute the parity of these bits. The diffi-
culty of this task, of course, depends on the noise and
the connectivity of the network. In this paper, we as-
sume that each bit sent is flipped (independently for
each receiver) with probability ε > 0 during transmis-
sion. As for connectivity, we adopt the widely used

∗Tata Institute of Fundamental Research, Mumbai, INDIA.

email: {chinmoy,jaikumar}@tifr.res.in
†Stanford University, USA. email: ykanoria@stanford.edu

The work was done while this author was at Indian Institute of

Technology, Mumbai, INDIA.
‡Indian Institute of Technology, Mumbai, INDIA. email:

dmanju@ee.iitb.ac.in

model of random planar networks. Here the sensors
are assumed to be randomly placed in a unit square.
Then each transmission is assumed to be received (with
noise) by the sensors that are within some prescribed
radius of the sender. The radius is determined by the
amount of power used by the sensors, and naturally one
wishes to keep the power used as low as possible, per-
haps just enough to ensure that the entire network is
connected. It has been shown by Gupta and Kumar [4]

that the threshold of connectivity is θ

(√
ln n
n

)
(with a

radius much smaller than this the network will not be
connected almost surely, and with radius much larger it
will be connected almost surely).

Our work is motivated by a protocol presented by
Ying, Srikant and Dullerud [9] for computing the sum
of all the bits (and hence any symmetric functions of
these bits). They showed that even with the radius of
transmission just near the connectivity threshold, and
constant noise probability, one can compute the sum
using a total of O(n log log n) transmissions. They ob-
served the (trivial) lower bound of n transmissions (for
every processors must send at least one message), but
left open the possibility of better upper bounds. One
can compute the parity of the input bits from their sum;
in fact, Ying et al. suggested that parity computation
might be significantly easier than computing the sum.
In this work, we prove a lower bound showing that the
protocol of Ying et al. is optimal up to constant factors
for computing the parity of the input bits. In order to
state our result formally we need to define the model of
noisy communication networks.

Definition 1.1. (Noisy network, protocol)
A communication network is an undirected graph G
whose vertices correspond to processors and edges
correspond to communication links. A message sent by
a processor is received by all its neighbors.

Noise: In an ε-noise network, the messages are sub-
jected to noise as follows. Suppose processor v
sends bit b in time step t. Each neighbor of v then
receives an independent noisy version of b; that is,
the neighbor w of v receives the bit b⊕ ηw,t, where
ηw,t is an ε-noisy bit (that takes the value 1 with
probability ε and 0 with probability 1 − ε), these
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noisy bits being mutually independent.

Input: An input to the network is an assignment of
bits to the processors, and is formally an element
of {0, 1}V (G).

Protocol: A protocol on G for computing a function f :
{0, 1}V (G) → {0, 1} works as follows. The proces-
sors take turns to send single bit messages, which
are received only by the neighbors of the sender. In
the end, a designated processor v∗ ∈ V (G) declares
the answer. The cost of the protocol is the total
number of bits transmitted. A message sent by a
processor is a function of the bits that it possesses
until then. The protocol with cost T is thus spec-
ified by a sequence of vertices 〈v1, v2, . . . , vT 〉 and
a sequence of T functions 〈g1, g2, . . . , gT 〉, where
gt : {0, 1}jt → {0, 1} and jt is the number of bits
received by vt before time step t (plus one if vt is
an input processor). Furthermore, vT = v∗, and
the final answer is obtained by computing gT . Note
that in our model the number of transmissions is
the same for all inputs.

Error: Such a protocol is said to be a δ-error protocol, if
for all inputs x ∈ {0, 1}V (G), Pr[output = f(x)] ≥
1− δ.

In this paper, we consider networks that arise out
of random placement of processors in the unit square.

Definition 1.2. (Random planar network)
A random planar network N (N,R) is a random
variable whose values are undirected graphs. The
distribution of the random variable depends on two
parameters: N , the number of vertices, and R, the
transmission radius. The vertex set of N (N,R) is
{P1, P2, . . . , PN}. The edges are determined as follows.
First, these processors are independently placed at
random, uniformly in the unit square [0, 1]2. Then,

E(N ) = {(Pi, Pj) : dist(Pi, Pj) ≤ R}.

Theorem 1.1. (Lower bound for parity)
Let R ≤ N−β for some β > 0. Let δ < 1

2 and
ε ∈ (0, 1). Then, with probability 1 − o(1) (over the
placement of processors) every δ-error protocol on
N (N,R) with ε-noise for computing the parity func-
tion ⊕ : {0, 1}V (N ) → {0, 1} requires Ω(N log log N)
transmissions.

Remark 1.1. This lower bound on parity, in fact, im-
plies that the sum cannot be computed up to a con-
stant additive error with o(N log log N) transmissions.
We conjecture that one cannot approximate the sum to
within an additive error of Nα (for some α > 0) using
O(N) transmissions.

Remark 1.2. Our definition of noise assumes that all
transmissions are subject to noise with probability ex-
actly ε. In the literature, other models of error have
been considered. Some protocols work even in the weaker
model where this probability is at most ε. Our lower
bound applies also to this model.
Remark 1.3. We require only an upper bound on the
transmission radius. However, the result is meaningful

only when R = Ω(
√

log N
N ), for otherwise, with high

probability, the network is not connected and cannot be
expected to compute any function that depends on all its
inputs.

1.1 Related work The most commonly studied
noisy communication model allows full broadcasts, that
is, all sensors receive all messages (with independent
noise). In this model, Gallager [2] considered the prob-
lem of collecting all the bits at one sensor, and showed
how this could be done using O(N log log N) transmis-
sions; this implies the same upper bound for computing
any function of the input bits. More recently, in a re-
markable result, Goyal, Kindler and Saks [3] showed
that Gallagher’s protocol was the best possible for col-
lecting all the bits. However, they do not present any
boolean function for which Ω(N log log N) transmissions
are required.

In the full broadcast model, protocols for comput-
ing specific functions have also been studied in the lit-
erature. Feige and Raghavan [1] presented a protocol
with O(N log∗ N) transmissions for computing the OR
of N bits; this result was improved by Newman [8], who
gave a protocol with O(N) transmissions. For com-
puting threshold functions Kushilevitz and Mansour [7]
showed a protocol with O(N) transmissions, assuming
that all messages are subject to noise with probability
exactly ε. Under the same assumption, Goyal, Kindler
and Saks [3] showed that the sum of all the bits (and
hence all symmetric functions) could be computed with
O(N) transmissions.

In this paper we are concerned with networks aris-
ing from random placement of sensors, where consid-
erations of power impose stringent limits on the trans-
mission radius. In this model, besides Ying, Srikant
and Dullerud’s [9] protocol for computing the sum men-
tioned above, the only other result we are aware of is a
protocol of Kanoria and Manjunath [6] that uses O(N)
transmissions to compute the OR functions. However,
no non-trivial lower bounds that apply specifically to
sensor networks with limited transmission radius have
appeared in the literature.

1.2 Techniques We now present an overview of the
proof technique used to derive our lower bound. As
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we explain in more detail in the next section, the proof
has two parts. The first part is geometric. Since the
transmission radius is small, it is possible to decompose
the vertices of the communication network into clusters.
The nodes in the interior of each cluster will continue
to receive input, but those on the boundary will have
their input fixed (arbitrarily) and thereby become aux-
iliary processors that still participate in the protocol by
sending and receiving messages. This graph theoretic
decomposition is based on routine arguments involving
the distribution points chosen randomly and indepen-
dently from the unit square. This decomposition allows
us to view the protocol as a combination of several pro-
tocols acting independently on each cluster.

To view the protocol as a combination of separate
protocols is not straightforward and we need to revisit
the arguments used by Goyal, Kindler and Saks [3] to
obtain their lower bounds. A key insight in their proof
was that protocols in noisy communication networks
could be translated into what they called generalized
noisy decision trees. We adapt their argument to our
setting. For us it is important to ensure that the de-
composition of the network (which was the consequence
of the limited transmission radius) is reflected in the
noisy decision tree we construct. So, we define a notion
of noisy decision trees appropriate for our setting, and
show how efficient protocols on decomposed networks
can be translated to such decision trees of small depth.

The argument this far was general and did not
use the fact that the ultimate goal was to compute
the parity function. The final part of our argument
shows that we can rearrange the decision tree so that
queries made to variables in the same cluster of the
decomposition appear at adjacent levels of the tree.
This part crucially depends on the fact that we are
trying to compute the parity function. After the
rearrangement, we can view the entire computation as
a sequence of noisy decision tree computations, one for
each cluster. We conclude that in order to have low
overall error, the computation in each cluster must have
vanishingly small error probability. At this stage we can
directly apply a result of Goyal, Kindler and Saks, which
states that any decision tree that computes the parity
function with error o(1) must have superlinear depth.
This dependence of depth on error is strong enough
to yield our lower bound. Proving lower bounds for
functions other than parity using this approach would
require developing of techniques that would eliminate
the need for the rearrangement argument and remains
an interesting open problem.

The interesting feature of this argument is that we
work with appropriately defined decision trees instead of
directly with the decomposed protocol. Once inputs of

processors have been set, they become auxiliary. How-
ever, they continue to participate in the protocol. In
particular, they receive transmissions from processors
with inputs and can potentially aid error correction by
providing additional reception diversity, which is cru-
cially exploited in many of the upper bounds. So it
is not true that our decomposition immediately breaks
the protocol into independent subprotocols, operating
separately on different clusters. Nevertheless, when we
translate the decomposed protocol into our model of
decision trees, we can view the computation of the en-
tire decision tree as a combination of independent deci-
sion subtrees, operating separately on different clusters.
This provides us the required product property, from
which one easily deduces that each individual subtree
must compute the parity within its cluster very accu-
rately.

1.3 Organization of the paper In Section 2, we
state two lemmas corresponding to the two parts of the
argument, and derive the lower bound for parity. These
lemmas are proved in later sections. The argument to
show that networks with limited transmission radius can
be decomposed appears in Section 4. In Section 3 we
present our analysis of decomposed protocols. Most
of that section is devoted to manipulations of noisy
decision trees and the analysis of parity computations
on these trees. The translation of noisy decomposed
protocols into noisy decision trees appears in Section 5.

2 Proof of the lower bound for parity

In our proof, we will need to consider networks where
some processors receive no input. We now introduce the
terminology applicable in such situations.

Definition 2.1. (Input and auxiliary processors)
Let G = (V,E) be a communication network. Some of
the processors in V are designated as input processors;
and the rest as auxiliary processors. We use I to refer
to the set of input processors, and A for the set of
auxiliary processors. An input to such a network is an
element of {0, 1}I and a protocol on such a network
computes a function f : {0, 1}I → {0, 1}.

Definition 2.2. (Network decomposition)
Let G = (I ∪ A,E) be a communication network.
An (n, k)-decomposition of G is a partition of the
vertex set of G of the form I = I1 ∪ · · · ∪ Ik and
A = A0 ∪A1 ∪ · · · ∪Ak such that for j = 1, 2, . . . , k,

(P1) |Ij | = n, and

(P2) the neighborhood of Ij is contained in Ij ∪Aj.

The transmission noise parameter ε remains the same.
A protocol Π on G is said be a (d, D)-bounded protocol
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with respect to the decomposition 〈A0, (Ij , Aj) : j =
1, 2, . . . , k〉 if

(P3) a processor in Ij makes at most d transmissions,
and

(P4) all processors in Ij ∪Aj put together make at most
D transmissions.

Part I: This part of our argument is based on the
observation that in a random planar network, processors
are typically distributed uniformly over the entire area.
By fixing the inputs of some of the processors, we can
create ‘buffer zones’ of auxiliary processors so that the
remaining processors now fall into large number of well-
separated large clusters.

Lemma 2.1. Suppose R ≤ N−β, for some β > 0.
Then, with probability 1− o(1) the following holds: if

there is a δ-error protocol on N = (N,R) for
computing the parity function (on N bits) with
T transmissions,

then

there is an (n, k)-decomposition of N and a δ-
error (d, D)-bounded protocol for parity (on nk
bits) with respect to this decomposition, where
n = Ω(NR2), k = Ω(1/R2), d = O(T/N) and
D = O(TR2).

This lemma is proved in Section 4
Part II. In the second part of our argument,

we analyze such bounded protocols for decomposed
networks. Our analysis closely follows that of Goyal,
Kindler and Saks [3]. For showing lower bounds on
the number of transmissions in a noisy communication
protocol, Goyal et al. translated such protocols into
generalized noisy decision (gnd) trees. To state their
result, and describe how it is used in our proof, we need
a definition.

Definition 2.3. (Advantage) Let µ be a distribution
on {0, 1}n. Let f : {0, 1}n → {+1,−1} and A :
{0, 1}n → C, where C is some set. Then, the advantage
of A for f under µ is given by

advf,µ(A) = max
a:C→[−1,+1]

|E[f(X)a(A(X))]|,

where X has distribution µ. We will also use this
notation even when A corresponds to a randomized
algorithm, in which case, the expectation is computed
over X as well as the independent internal random
choices made by A.

The result of Goyal et al. showed that the output of
a gnd tree of small depth cannot have high advantage
for the parity function. The following theorem states
this result precisely. For a distribution µ on {0, 1}n, let
αµ(n, D, ε) ∆= maxT adv⊕,µ(T ), where T ranges over all
gnd trees with ε-noise and depth at most D and inputs
in {0, 1}n. The formal definition of gnd trees appears in
Section 3.2, but for the discussion in this section all we
need to know is that a gnd tree has three parameters
associated with it: the number of inputs, the depth, and
the noise probability.

Theorem 2.1. (Goyal, Kindler and Saks [3])
Let µ be the distribution on {0, 1}n defined by µ(0n) = 1

2
and µ(e) = 1

2n for all e of weight 1. Then

αµ(n, D, ε) ≤ 1− exp
(
−O

(
D log2(1/ε)

ε2n

))
(2.1)

Lemma 2.2. (Product lemma) For all distributions
µ on {0, 1}n and (d, D)-bounded protocol Π on a network
with (n, k)-decomposition and ε-noisy transmissions, we
have adv⊕,µk(Π) ≤ αµ(n, 3D, εd)k.

Proof of Theorem 1.1. Let µ be the distribution
defined in Theorem 2.1. By combining Lemmas 2.1
and 2.2, we conclude that with probability 1− o(1) the
following is true: if N (N,R) has a δ-error protocol with
T transmissions, then

1− 2δ ≤ αµ(n, 3D, εd)k,

where n = Ω(NR2), k = Ω(1/R2), d = O(T/N) and
D = O(TR2). Our assumption that R ≤ N−β when
combined with (2.1) implies that T = Ω(N log log N).

3 Analysis of decomposed protocols

In this section, we prove Lemma 2.2 by analyzing de-
composed protocols for parity. We present our argu-
ment in a top-down fashion, by first assuming that de-
composable protocols can be translated to suitably de-
fined restricted noisy decision trees and completing the
proof of Lemma 2.2 (in Section 3.1); detailed arguments
justifying our assumption are presented in Sections 3.2
and 5.

3.1 Proof of Lemma 2.2

Definition 3.1. (Noisy decision tree) An (n, k)-
noisy (read-once) decision tree is a model for process-
ing inputs in ({0, 1}n)k. It consists of a balanced tree of
depth k, whose internal nodes are labelled by a noisy
function gv : {0, 1}n → Cv, where Cv is the set of
children of v. By a noisy function we mean a func-
tion whose output depends on its input and some inter-
nal randomness that is independent for different noisy
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computations performed in the tree. Once an input
x = 〈x1, x2, . . . , xk〉 ∈ ({0, 1}n)k is fixed, the (random)
output of the tree is determined by the following natural
computation. We start at the root, and when we ar-
rive at an internal node v at level i, we determine the
next vertex by evaluating gv(xi). The (random) output
of the tree on input x ∈ ({0, 1}n)k is the leaf reached in
the end. Let L(T ) denote the set of leaves of T .

In our translation of a (d, D)-bounded protocol for
an (n, k)-decomposed network into a noisy decision tree,
we will ensure that the individual functions computed at
the internal nodes of the trees cannot predict the parity
function well.

Lemma 3.1. (Translation lemma) For any (d, D)-
bounded protocol Π on an (n, k)-decomposed network
with ε-noisy transmissions, and a distribution µ on
{0, 1}n, there is a noisy decision tree T for inputs in
({0, 1}n)k such that

• adv⊕,µk(T ) ≥ adv⊕,µk(Π);

• adv⊕,µ(g) ≤ αµ(n, 3D, εd) for every function g that
appears in T .

This lemma will be proved in the following sections.
In this section, we show how it can be used to prove
Lemma 2.2. The main observation in this section is
the following ‘product property’ for the advantage of
decision trees.

Lemma 3.2. (Advantage of noisy decision trees)
Let h : {0, 1}n → {+1,−1}. Suppose T is a noisy
decision tree for computing f : ({0, 1}n)k → {+1,−1}
defined by f(〈x1, x2, . . . , xk〉) =

∏k
i=1 h(xi). Sup-

pose, for each function A that appears in T we have
advh,µ(g) ≤ α. Then, advf,µk(T ) ≤ αk.

Proof of Lemma 2.2. The lemma follows immediately
by combining Lemmas 3.1 and 3.2.

It remains to prove Lemma 3.2. We will make use
of the following proposition.

Proposition 3.1. Let X be random variable taking
values in {0, 1}n with distribution µ. Then, for all
A : {0, 1}n → C and a : C → R, |E[f(X)a(A(X))]| ≤
advf,µ(A) · |a|, where |a| = maxc∈C |a(c)|.

Proof of Lemma 3.2. Fix b : L(T ) → [−1,+1]. Let
X take values in ({0, 1}n)k with distribution µk. We
wish to show that

|E[f(X)T (X)]| ≤ αk.

Let the (random) sequence of vertices visited by the
computation of T on input X be v1,v2, . . . ,vk,vk+1.

For i = 1, 2, . . . , k and v in level i of the tree (at distance
i− 1 from the root) let

αi(v) = E[h(Xi)h(Xi+1) · · ·h(Xk)b(vk+1) | vi = v].

We will show by reverse induction on i that
|αi(v)| ≤ αk+1−i. The claim will then follow by tak-
ing i to be 1 and v to be the root of T . For the base
case, we have

αk(v) = E[h(Xk)b(vk+1) | vk = v]
= E[h(Xk)b(gv(Xk))]
≤ advh,µ(gv) ≤ α.

For the induction step assume that i < k and that
|αi+1(w)| ≤ αk−i for all vertices w in level i + 1 of the
tree (at distance i from the root). Then, for a vertex v
in level i, we have

|αi(v)| = |E[h(Xi)h(Xi+1) · · ·h(Xk)b(vk+1) | vi = v]|
= |E[h(Xi)αi+1(gv(Xi))]|
≤ advh,µ(gv) ·max

w
|αi+1(w)|

≤ αk+1−i,

where we used Proposition 3.1 to justify the second last
inequality, and the induction hypothesis to justify the
last inequality.

3.2 Tree rearrangement This and the next section
will be devoted to the proof of Lemma 3.1, which we
assumed in the proof of Lemma 2.2. As stated earlier,
we will use the method of Goyal, Kindler and Saks [3] to
translate a communication protocol into a noisy decision
tree. Then, we will show how this noisy decision tree can
be rearranged to ensure that the tree has the required
read-once property required in Definition 3.1. We will
first state in the form of a lemma, the result obtained by
a direct application of the arguments in Goyal, Kindler
and Saks [3]. Then, assuming this this lemma, we will
prove Lemma 3.1 in this section. In the next section, we
will review the arguments of Goyal, Kindler and Saks [3]
and apply them to our setting.

Definition 3.2. (Ordered oblivious tree) A de-
cision tree for the set of inputs Sk is a balanced tree
where each internal node v is labelled by a pair 〈iv, gv〉
where iv ∈ [k] and gv : Siv → Cv, where Cv is the set of
children of v. Such a tree T computes a function from
Sk to the set L(T ) of leaves of T as follows: on in-
put 〈x1, x2, . . . , xn〉, the computation starts at the root
and determines the next vertex to visit after a vertex
v by evaluating gv(xiv ); the leaf reached in the end is
the result of the computation. If a vertex v is labelled
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by i ∈ [k], then we say that the i-th input variable is
queried at that vertex. We say that the tree is oblivious
if the label iv of a vertex v depends only on v’s distance
from the root. We say that such a tree is ordered if for
all j ∈ [k] all queries to the the j-th input appear at
consecutive levels.

Remark 3.1. In the definition above, the functions gv

are deterministic. However, in order to model noisy
communication networks we will need to allow functions
computed at the internal nodes to have noise. Goyal,
Kindler and Saks modelled this noise by allowing the
functions additional variables, which were set according
to some distribution independent of the input (but based
on a noise parameter δ).

Definition 3.3. (GKS-tree) An (n, k,D, δ)-GKS
tree T̂ consists of an oblivious decision tree T on inputs
Sk where S = {0, 1}n × ({0, 1}n)|Λ| (for some index set
Λ), where each function gv has a special form:

gv(xiv
, ziv

) = g′v(xiv
⊕ ziv,λv

),

for some g′v : {0, 1}n → Cv and λv ∈ Λ. Each input is
queried at most D times in the tree. The computation
of T̂ proceeds as follows: on input x ∈ ({0, 1}n)k, each
zi,λ ∈ {0, 1}n is chosen independently according to the
binomial distribution B(n, δ). Once the entire input
(x, z) ∈ Sk is determined, we compute T (x, z) as in
Definition 3.2 above.

Remark 3.2. When k = 1 the trees defined in the
above definition correspond to the generalized noisy
decision (gnd) trees of Goyal, Kindler and Saks [3].

We can now state the main connection between
protocols and decision trees.

Lemma 3.3. For any (d, D)-bounded protocol Π on
an (n, k)-decomposed network with ε-noisy transmis-
sions, and distribution µ on ({0, 1}n)k, there is an
(n, k, 3D, εd)-GKS tree T such that adv⊕,µ(T ) ≥
adv⊕,µ(Π).

We present the detailed proof of this lemma in
Section 5. Note that this lemma does not guarantee that
the resulting GKS tree is ordered. Our main observation
in this section is that decision trees can be assumed
to be ordered when the inputs come from a product
distribution, and we wish to approximate the parity
function. To show this we will describe a method for
rearranging an arbitrary oblivious decision tree so that
it becomes ordered. To state this formally, we need one
more definition.

Definition 3.4. (Tree rearrangement) Let T
and T ′ be oblivious decision trees for the same set of
inputs. We say that T ′ is a rearrangement of tree T if

• both trees query each variable the same number of
times;

• the functions labelling vertices of T ′ also appear in
T (up to obvious renaming of children); formally,
for every vertex v̂ in T ′ labelled (i, ĝ), there is a
vertex v in T labelled (i, g) in T and a bijection
π : Cv̂ → Cv such that ∀x ∈ Si : ĝ(x) = π(g(x)).

Lemma 3.4. (Ordering lemma) Let f : Sk →
{+1,−1} of the form f(x1, x2, . . . , xk) =
h(x1)h(x2) · · ·h(xk). Let µ be a product distribu-
tion on Sk. Then every oblivious decision tree T can
be rearranged to obtain an ordered oblivious decision
tree T̂ such that advf,µ(T̂ ) ≥ advf,µ(T ).

This lemma will follow immediately from the fol-
lowing claim.

Lemma 3.5. (Move to root) Let f : Sk →
{+1,−1} be of the form f(x1, x2, . . . , xn) =
h(x1)h(x2) · · ·h(xn), where h : S → {+1,−1}.
Let µ be a product distribution on Sk. Let T be an
oblivious decision tree with inputs in Sk such that the
input xn is queried only at the level just above the
leaves. Then, T can be rearranged to obtain a tree T̂
where

1. the input xn is queried only at the root;

2. for all j 6= n, if xj was queried at level r of T , then
xj is queried at level r + 1 of T̂ ;

3. advf,µ(T̂ ) ≥ advf,µ(T ).

Proof of lemma 3.5. Let X = 〈X1, X2, . . . , Xk〉 take
values in Sk with distribution µ; since µ is a product
distribution the Xi’s are independent. Suppose T makes
t queries to the input. Let v1,v2, . . . ,vt+1 be the
random sequence of vertices visited by the computation
of T on input X. Fix b : L(T ) → [−1,+1] such that

advf,µ(T ) = |E[h(X1)h(X2) · · ·h(Xn)b(vt+1)]|
= |E[E[h(X1) · · ·h(Xn)b(gvt

(Xn)) | vt]]|.

Since Xn is queried only at the end,
h(X1) . . . h(Xn−1) and b(gvt

(Xn)) are independent
given vt, so E[h(X1) . . . h(Xn−1)h(Xn)b(gvt

(Xn)) | vt]
= E[h(X1) . . . h(Xn−1) | vt] · E[h(Xn)b(gvt

(Xn)) | vt].

Let α(v) = E[h(X1) . . . h(Xn−1) | vt = v] and
β(v) = E[h(Xn)b(gvt(Xn)) | vt = v]. Let v∗ =
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arg max β(v); thus, among the functions labelling ver-
tices that query Xn (at level t), g∗v has the best advan-
tage in the tree for h under the distribution of Xn. It is
thus natural to expect (and not hard to verify) that if
we replace all queries to Xn by this query gv∗ , the over-
all advantage can only improve. Once this is done, the
last query does not depend on the previous query, and
can, therefore, be moved to the root. We now present
the argument formally. We have,

advf,µ(T ) = |E[α(vt)β(vt)]|(3.2)
≤ E[|α(vT )|] · |β(v∗)|.

We are now ready to describe the rearrangement of
T . Let T − be the subtree of T consisting of the first t
levels of vertices; thus vertices where Xn is queried in T
become leaves in T −. We first make |Cv∗ | copies of T −;
we refer to these copies by T −

c (c ∈ Cv∗), and assume
that the root of T −

c is renamed c. In the new tree T̂ , we
have a root with label 〈n, gv∗〉 which is connected to the
subtrees T −. We claim that advf,µ(T̂ ) ≥ advf,µ(T ).
Indeed, consider the function b̂ : L(T̂ ) → [−1,+1]
that takes the value sign(α(v))b(c) on the leaf in T −

c

corresponding to v ∈ L(T −). Then, we have

advf,µ(T̂ ) ≥ |E[h(X1)h(X2) · · ·h(Xn)b̂(v̂T )]|(3.3)
= E[|α(vT )|]|β(v∗)|.

Lemma 3.5 now follows by combining (3.2) and (3.3).
We are now ready to show how trees computing the

parity function can be reordered, and prove Lemma 3.4.
The argument essentially involves repeated application
of Lemma 3.5 to place all queries made to a variable
in adjacent levels. We state the argument formally by
considering a carefully defined minimal counterexample.

Proof of Lemma 3.4. Fix an oblivious decision tree
T . Let the depth T be r. We say that there is an
alternation at level ` ∈ {3, . . . , r} of T if the variable
queried at level ` is queried at a level before ` − 1 but
not at level `− 1. Clearly, a tree with no alternations is
an ordered tree. Among all rearrangements of T , let T̂
be such that

(P1) advf,µ(T̂ ) ≥ advf,µ(T );

(P2) among all T̂ satisfying (P1), T̂ has the fewest
alternations;

(P3) among all T̂ satisfying (P1) and (P2), the last
alternation in T̂ is farthest from the root.

We claim that T̂ has no alternations. Let us assume
that T̂ has alternations and arrive at a contradiction.
Let T̂ ′ be the tree obtained from T̂ by merging queries

on adjacent levels into one superquery. That is, if there
are j adjacent levels somewhere in the tree that query
xi, with two outcomes, then we replace these j levels
by a single superquery with 2j outcomes. Note that the
number of alternations in T̂ ′ is the same as in T̂ . Let r′

be the number of queries in T̂ ′. We consider two cases:

T ′ does not have an alternation at level r′:
Let x1 be the variables queried at level r′. By
Lemma 3.5, we obtain a tree T̂ ′′ where the super-
query to x1 appears only at the root, and all other
superqueries are shifted one level down. Now,
however, if each superquery in T̂ ′′ is replaced by
its corresponding subtree of queries from T̂ , then
we obtain a rearrangement of T̂ satisfying (P1)
and (P2), but with alternation at a level farther
from the root, contradicting (P3).

T ′ has an alternation at level r′: Suppose x1 is
queried at level r′, and the previous query to x1

is at level r′′ < r′ (with no queries to x1 in the
levels r′′ + 1, r′′ + 2, . . . , r′ − 1). Now, we apply
Lemma 3.5 to the subtrees of T ′ rooted at level
r′′ + 1, thereby obtaining a rearrangement T̂ ′′,
where x1 is now queried at levels r′′ + 1 instead
of at level r′. Clearly, the resulting tree T̂ ′′ has
fewer alternations than T̂ ′. Furthermore, if each
superquery in T̂ ′′ is replaced by its corresponding
tree of queries from T̂ , we obtain a rearrangement
of T̂ . It can be verified that this rearrangement
has advantage at least no worse than T̂ but has
fewer alternations—contradicting (P2).

Proof of Lemma 3.1. By combining Lemmas 3.3 and
3.4 we see that Π can be converted into a ordered
localized (n, k, 3D, εd)-GKS tree. Since this tree is
ordered all queries to any particular variable appear in
consecutive levels. In our final tree we will combine
all these queries into a single query. In particular, if
there are ` ≤ 3D levels that query (xi, zi), then we
collapse them, so as to yield a single query with 2`

outcomes. Note, however, that the result of this query
depends not only on the real input in xi ∈ {0, 1}n

but also on the noise variable zi. In the final noisy
decision tree T , we regard this superquery g(xi) as a
noisy function of the input xi, with zi providing the
internal randomness for its computation. Since g(xi)
was derived from a gnd-tree of depth ` ≤ 3D with noise
εd, it follows from the definition of αµ(n, 3D, εd) that
adv⊕,µ(g) ≤ αµ(n, 3D, εd)
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4 Decomposing random planar networks:
proof of Lemma 2.1

The random placement of processors in the unit square
typically arranges them uniformly. We will exploit this
uniformity to obtain the required decomposition.

Lemma 4.1. (Chernoff bounds) Let X be the sum
of N independent identically distributed indicator ran-
dom variables. Let µ = E[X]. Then, Pr[X ≤ 1

2µ] ≤
exp(−0.15µ).

Proof. Our claims follow immediately from the fol-
lowing version of the Chernoff bound due to Hoeffd-
ing [5]: if the random variable Z has binomial distribu-
tion B(N, p), then

Pr[X ≥ (p+δ)N ] ≤
(

p

p + δ

)(p+δ)N( 1− p

1− p− δ

)(1−p−δ)N

.

(4.4)
To derive our claim, we consider the random vari-

able Y = N − X, and apply (4.4) with p = 1 − µ
N and

δ = µ
2N , to obtain

Pr[X ≤ 1
2
µ] ≤ Pr[Y ≥ (p + δ)N ]

≤
(

1− δ

p + δ

)(p+δ)N( 1− p

1− p− δ

)(1−p−δ)N

≤ exp(−δN) · 2
µ
2

≤ exp
(
−1

2
(1− ln 2)µ

)
≤ exp(−0.15µ).

Proof of Lemma 3.2. We tessellate the unit square
into b1/Rc cells, each a square of side 1

b1/Rc . We number
the rows and columns of this tessellation using indices
in {1, 2, . . . , b1/Rc}, and refer to the cell in the i-th
row and j-th column by cij . (Later, we use cij to
refer to the set of processors that fall in this cell.) We
thus have a total of M = b1/Rc2 cells. The expected
number of processors in any one cell is µ = N/M .
Since R ≥

√
10 ln N/N , we have µ ≥ 10 ln N , and

by Lemma 4.1, the probability that there are fewer
than µ/2 processors in any one cell is is o( 1

M ). So,
with probability 1− o(1), all cells have at least at least
N/(2M) processors.

Now, let S1 = {cij : i = 1 (mod 3) and j = 1
(mod 3)}. Then, |S1| ≥ M/9. For each c ∈ S1, let the
neighborhood of c, denoted by Γ(c), be the set of (at
most nine) cells that are within distance R of c. Note
that distinct cells in S1 have disjoint neighborhoods.
If the total number of transmissions in the original
protocol is T , then the average number of transmissions

made from Γ(c) as c ranges over S1 is at most 9T/M .
By Markov’s inequality, for at least half the cells c ∈ S1

fewer than 18T/M transmissions are made from Γ(c).
Let S2 be the set of these cells; |S2| ≥ M/18. For
each cell c ∈ S2, we identify the set Ic of dN/(4M)e
processors that make fewest transmissions. We are
now ready to describe the decomposition of the planar
communication network.

The set of input processors will be I =
⋃

c∈S2
Ic. We

fix the input of all processors not in I at 0, and treat
them as auxiliary processors. The protocol continues to
compute the parity of the inputs provided to processors
in I. For c ∈ S2, let Ac be the set of auxiliary
processors in the cells in Γ(c). (We include those
auxiliary processors that are in no Γ(c) in any of the
Ac arbitrarily.) We have thus obtained a decomposition
〈Ic : c ∈ S2〉 ∪ 〈Ac : c ∈ S2〉, such that

(a) the number of input classes in the decomposition is
k = |S2| ≥ M/18;

(b) each input class has n = dµ/4e processors;

(c) The total number of transmissions made by all
processors in Ic ∪Ac is at most D = 18T/M ;

(d) The total number of transmissions made by any one
processor is Ic is at most d = D/n = 72T/N .

The original protocol now reduces to a δ-error (d, D)-
bounded protocol for computing the parity function
on an (n, k)-decomposed network, where n ≥ NR2/4,
k ≥ 1

18 b1/Rc2, d ≤ 72T/N and D ≤ 18TR2.

5 Translation from communication protocol to
decision trees

We will translate a protocol into a decision tree and
prove Lemma 3.3. Our proof borrows heavily from a
similar proof of Goyal, Kindler and Saks; as in their
proof, we will use two intermediate communication
models before we finally derive the decision tree. In
this section, for brevity, we use the notation (n, k, d,D)-
protocol to mean a (d,D)-bounded protocol on an
(n, k)-decomposed network.

Definition 5.1. (Intermediate protocols) The
following two kinds of protocols are obtained by imposing
restrictions on decomposed protocols of Definition 2.2.

Semi-noisy protocol: An ε-noise (n, k, d,D)-semi-
noisy protocol differs from an (n, k, d,D)-protocol
only in the following respects.

(a) When it is the turn of an input processor to
send a message, it sends its input bit, whose
independent ε-noisy copies are then received by
its neighbors.
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(b) A transmission made by an auxiliary processor
is not subject to any noise.

Noisy copy protocol: An ε-noise (n, k,D)-noisy-
copy protocol is an ε-noise (n, k, 1, D)-semi-noisy
protocol; in other words, every input processor
makes exactly one broadcast, so that each of its
neighbors receives exactly one independent ε-noisy
copy of this input.

Remark 5.1. In these special kinds of protocols, the
messages sent by the input processors does not depend
on the messages these processors receive. Thus, we may
assume that the input processors make their transmis-
sions in the beginning of the protocol an appropriate
number of times, and after that the auxiliary processors
interact according to a zero noise protocol.

Lemma 5.1. (From broadcast to semi-noisy) For
every function f : ({0, 1}n)k → {+1,−1}, distribution
µ on ({0, 1}n)k and every ε-noise (n, k, d,D)-protocol
Π, there is an ε-noise (n, k, d, 3D)-semi-noisy protocol
Π1 such that advf,µ(Π) ≤ advf,µ(Π1).

Lemma 5.2. (From semi-noisy to noisy-copy)
For every function f : ({0, 1}n)k → {+1,−1},
distribution µ on ({0, 1}n)k and every ε-noise
(n, k, d,D)-semi-noisy protocol Π1, there is an εd-
noise (n, k,D)-noisy-copy protocol Π2 such that
advf,µ(Π1) ≤ advf,µ(Π2).

Lemma 5.3. (From noisy-copy to GKS tree)
For every function f : ({0, 1}n)k → {+1,−1},
distribution µ on ({0, 1}n)k and every ε-noise (n, k,D)-
noisy-copy protocol Π2, there is an (n, k,D, ε)-GKS
tree T such that advf,µ(Π2) ≤ advf,µ(T ).

Proof of Lemma 5.1. Fix an (n, k, d,D)-protocol Π
on a graph G. We will construct an (n, k, d, 3D)-
semi-noisy protocol Π1 on a G1 = (V1, E1). The
graph G1 will contain G as a subgraph; however, all
vertices inherited from G will correspond to auxiliary
processors. In addition, for each input vertex v of
G, we will have a new input vertex v′ in G1, which
will be connected to v and its neighbors in G. Let
(I =

⋃k
j=1 Ij , A = A0 ∪

⋃k
j=1 Aj), be the decomposition

corresponding to Π. The decomposition corresponding
to Π1 will be (I ′ =

⋃k
j=1 I ′j , A

′ = A0 ∪
⋃k

j=1 A′
j), where

I ′j = {v′ : v ∈ Ij} and A′
j = Aj ∪ Ij . Suppose Π uses T

transmissions.
Notation: For i = 1, 2, . . . , T and v ∈ V (G), let

bv[i] be the bit received by v when the i-th transmission
is made; if v does not receive the i-th transmission, we
define bv[i] to be 0.

The protocol Π1 for simulating Π will operate in T
stages, one for each transmission made by Π. The goal
is to ensure that in the end each auxiliary processor
v of G1 constructs a sequence b′v ∈ {0, 1}T , such that
〈b′v : v ∈ V (G)〉 and 〈bv : v ∈ V (G)〉 (of the protocol Π)
have the same distribution, for every input in ({0, 1})n.
This implies that the outputs of Π′ and Π have the same
distribution. Suppose the first ` − 1 stages have been
successfully simulated and 〈b′v[1, . . . , `− 1] : v ∈ V (G)〉
have been appropriately constructed. We now describe
how stage ` is implemented and 〈b′v[`] : v ∈ V (G)〉 are
constructed. If the `-th transmission in Π is made by
an auxiliary processor v in G, then it will be simulated
in Π1 using one noiseless transmission from v; if the
`-th transmission is made by an input vertex v of G,
then it will be simulated in Π1 using two (noiseless)
transmissions from v and one ε-noisy transmission from
the corresponding (newly added) input vertex v′.

v is an auxiliary vertex in G: The auxiliary vertex
v in G1 operates exactly in the same fashion as in
G, and sends a bit b, which is received without error
by all its neighbors. Each neighbor w ∈ V (G) of
v independently sets its bit b′w[`] to be an ε-noisy
copy of b.

v is an input vertex in G: The auxiliary vertex v in
G1 has all the information that the corresponding
input vertex v in G would have had, except the
input (which is now given to the new input vertex
v′) . So, v transmits (with no noise) two bits, b0

and b1, corresponding to the two possible input
values that v′ might have. Next, the input vertex
v′ transmits its input c; let cw denote the ε-noisy
version of c that the neighbor w receives. Each
neighbor w ∈ V (G) of v now acts as follows: if
b0 = b1, then it sets b′w[`] to be an ε-noisy copy of
b0 (using its internal randomness); if b0 6= b1, then
it sets b′w[`] to bcw

.

Proof of Lemma 5.2. Let Π1 be an (n, k, d,D)-
semi-noisy protocol. As remarked above, all input
processors in a semi-noisy protocol can be assumed to
make their transmissions right in the beginning, after
which only the auxiliary processors operate. Thus, each
auxiliary processor receives at most d independent ε-
noisy copies of the input from each input processor in its
neighborhood. The following lemma of Goyal, Kindler
and Saks [3] shows that a processor can generate d
independent ε-noisy copies of any input from one εd-
noisy copy.

Let t be an arbitrary integer, ε ∈ (0, 1/2) and
γ = εt. There is a randomized algorithm that
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takes as input a single bit b and outputs a se-
quence of t bits and has the property that if the
input is a γ-noisy copy of 0 (respectively of 1),
then the output is a sequence of independent
ε-noisy copies of 0 (respectively of 1).

We modify the protocol Π1 to Π2 by requiring that
each input processor make one εd-noisy transmission
of its input bit. Each auxiliary processor on receiving
such an input uses its internal private randomness to
extract the required ε-noisy copies. Then onwards the
protocol proceeds as before. We may now fix internal
randomness used by the auxiliary processors in such
a way that the advantage of the resulting protocol
for the input distribution µ is at least as good as
that of the original protocol. Thus, all processors use
(deterministic) functions to compute the bit that they
transmit.

Proof of Lemma 5.3. Let Π2 be an (n, k,D)-noisy-
copy protocol, with the underlying decomposition (I =⋃k

j=1 Ij , A = A0∪
⋃k

j=1 Aj). We will now show how this
protocol can be simulated using a GKS-tree T . To keep
our notation simple, we will assume (by introducing
new edges, if necessary) that (a) all processors in A
are adjacent, and (b) every processor in Aj is adjacent
to every processor in Ij . Let T be the total number of
transmissions in Π2.

Notation: Let b1, b2, . . . , bT be the sequence of bits
transmitted in Π2 by the auxiliary processors. Suppose,
bi is transmitted by vertex v ∈ Ij by computing
gi(b1b2 · · · bi−1, xj ⊕ zv), where xj is the the restriction
of the input assignment to Ij and zv is an ε-noisy vector
in {0, 1}n.

The tree: The nodes of the GKS-tree T are 0-1
sequences of length at most T (the root is the node at
0th level and corresponds to the empty sequence). The
children of the node b ∈ {0, 1}i−1 (0 ≤ i − 1 ≤ T − 1)
are the two vertices b0 and b1. Fix i ∈ [T ] and
suppose vertex v ∈ Aj makes the i-th transmission.
The function that v computes to determine what to
transmit, will be used to compute the successor of the
nodes at the i − 1-th level. To state this formally,
suppose the function computed by v is gi(b, xj ⊕ zv),
where b ∈ {0, 1}i−1, xj is the restriction of the input to
Ij , and zv is an ε-noisy bit string of length n. Then,
the label of b ∈ {0, 1}i−1 (at level i − 1 in T ) is (j, h),
where h(xj , zv) = b · gi(b, xj ⊕ zv). (Since our definition
requires the function to return a child of b, h returns an
extension of b in {0, 1}i.)

Advantage: The set of leaves of T , L(T ), is
precisely {0, 1}T . Let a : L(T ) → {+1,−1} be defined
by a(b1b2 · · · bT ) = (−1)bT . Then, it follows from our

definitions that

adv⊕,µ(T ) ≥ E[⊕(x)a(T (x))]
= E[⊕(x)(−1)bT ]
= adv⊕,µ(Π2).

Proof of Lemma 3.3. Follows immediately from Lem-
mas 5.1, 5.2 and 5.3.
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